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Annihilation of point defects on a line
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We discuss the evolution of the distribution function of distances between point defects of opposite signs
distributed on a line of finite length interacting via a potential attractive at short distances and repulsive at large
distances. The standard deviation of the distribution grows quickly at short times, attains maximum, and
decreases logarithmicaly at longer times. The distance between the defects increases monotonically and at
equilibrium is about two times larger than the distance at which the repulsive force attains maximum. The
distance dependent viscosity does not change qualitatively these conclusions, but only increases the time scale
of evolution by one order of magnitude.
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I. INTRODUCTION

Disclination lines are ubiquitous in nematic liquid cry
tals. They spontaneously form in cylindrical capillary tub
treated in homeotropic anchoring~molecules perpendicula
to the surface! @1#. If the tube diameter is small enough@2,3#
~usually less than 0.1mm! a planar disclination line of rank
11 forms along the tube axis. ‘‘Planar’’ means that that t
director lies in a plane perpendicular to the line, forming
pure radial configuration with a singular core. For larger
ameters, and providing that the bend elastic constantK3 is
not too large, the director escapes along the tube axis, fo
ing a continuous configuration without singularity. Such
configuration allows the formation of an array of point d
fects: hyperbolic~H! and radial~R! @4,5#. This is due to the
fact that the director field, while translationally invaria
along the disclination line, can escape in two opposite dir
tions ~0 or p!, leading to two energetically equivalent co
figurations. Thus, breaking the symmetry along the line
volves the formation of point defects. These opposite defe
annihilate when brought together. One of the questio
which is still a matter of controversy is the interaction p
tential between them, especially at large distances.

There are three conflicting model calculations@6–8# that
give completely different interaction potentials between
defects despite the fact that they describe exactly the s
physical situation. Vilfan, Vilfan, and Zumer@6# calculated a
free energy for the linear, periodic array of RH defects a
function of their separation. Although they have not expl
itly calculated the potential between the defects their re
suggested that this potential should be linear and attrac
between RH defects at short distances and repulsive at l
distances. The characteristic distance of attraction is roug
equal to 0.1D, where D is the diameter of the capillary
Peroli and Virga@7# got for the same system a potential th
at short distances leads to an attractive force that varies l
rithmically with the distances between RH defects. T
force vanishes at some critical distance, which is appro
mately equal to 1.1D. Finally, Semenov@8# obtained for the
same system a potential always attractive between the
defects, which at short distances agrees with the one fo
1063-651X/2002/65~4!/041711~5!/$20.00 65 0417
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by Vilfan, Vilfan, and Zumer@6#. The most probable sourc
of discrepencies in these calculations is hidden in the bou
ary conditions. In Ref.@6# the most natural boundary cond
tions have been used, namely, the bulk free energy has
supplemented with the surface free energy such that hom
tropic alignment at the surface is preferred. However,
sufficiently large bulk elastic energy the director at the s
face could deviate from perpendicular alignment. In the S
menov calculations@8# the director has been fixed at th
surface perpendicularly to it. Peroli and Virga@7# set the
director perpendicular to the cylindrical surface in a lar
part of the volume of the cylinder. It is interesting to no
that all these models find their partial support in the mole
lar dynamics simulations or in the experiments. The obs
vation of the annihilation of two point defects@9# in the bulk
shows that the potential at short distances is attractive
linear as a function of the distance between R and H defe
In a capillary the potential between the defects should be
same at short distances~much smaller than the diameter! as
in the bulk. This observation supports theoretical calculatio
done in Refs.@6# and@8#. In the molecular dynamics study o
Bradac, Kralj, and Zumer@10#, it was observed that the dis
tances between the defects did not change when it was la
thanD. This observation supports the calculations of Per
and Virga. Finally, the NMR~nuclear magnetic resonance!
experiments of Crawfordet al. @5# showed that it is possible
to form stable arrays of point defects along the cylinde
where the defect density does not depend on the histor
the sample. This observation supports Refs.@6# or @7#. The
main problem of NMR experiments is that point defects a
indirectly detected so that the time evolution of their spa
distribution is out of reach.

One way to bypass this difficulty is to work in anoth
geometry that is easier to produce experimentally. This
periment consists of preparing a homeotropic sample
tween two parallel glass plates and looking at the circu
meniscus that forms near the sample sides at the nemati
interface@11#. In usual conditions, a21/2 disclination line
forms in the vicinity of the meniscus due to antagonis
boundary conditions on both the glass and the free interfa
This line has a singular core but is not necessarily plan
©2002 The American Physical Society11-1
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which means that the director may partially escape along
dislination line@12,13#. Again there are two possibilities fo
the director to escape, which are energetically equivalent
that point defects of opposite signs~6! can form on the line.
The main advantage of this experiment is that it is possibl
prepare arrays of point defects with various initial densiti
One method is to apply an external electric field to expu
the line out of the sample~it becomes virtual!: then, decreas-
ing or switching off the field leads to various distributions
defects@14#. The initial distribution is usually unstable be
cause point defects of opposite signs attract at short dista
as ‘‘RH’’ defects do in a capillary. As a consequence, t
distribution evolves toward a stable configuration via the
nihilation of neighboring defects at long time. In this expe
ment, it was possible to measure directly in the microsc
both the average distance between the defects and the
dard deviation of the distribution function for the distanc
between the defects as a function of time. The results
summarized in Fig. 1. We observe that initially the defe
annihilate and both the average distance between them
the standard deviation of the distribution of the distan
grow. Next, the average distance attains its equilibrium va
~as it does in capillary tubes of Crawfordet al. @5#!, while the
standard deviation attains a maximum. Later the stand
deviation decreases logarithmically with time.

Here we would like to simulate this process~that we ex-
pect to be very similar in circular capillary tubes! and see
which of the three potentials~i.e., always attractive, or attrac
tive at short distances and zero at large distances, or at
tives at short distances and repulsive at large distance! is
consistent with the experimental results shown in Fig. 1.

II. INTERACTIONS AND DYNAMICS OF POINT
DEFECTS

We have studied the evolution of point defects distribu
on the line interacting with a forcef (x), wherex.0 is a
distance between neighboring defects. We have used t

FIG. 1. The experimental results for the evolution of the dis
bution of point defects. The average distance between point de
~the left scale, filled squares! and the standard deviation~the right
scale, filled circles! as a function of time. The average is taken he
over 12 independent initial configurations~after Ref.@14#!.
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different models forf (x) consistent with three proposa
made in the literature@6–8#, i.e.,

f ~x!52~12x!exp~2x!, ~1!

which is attractive at short distances and repulsive at lon
distances as suggested by the calculations done in Ref@6#
~model I!.

f ~x!5 ln~x!, ~2!

which is attractive forx,1 and 0 otherwise@7# ~model II!.
Finally, we have modeled the force calculated by Seme
by

f ~x!52exp~2x2! ~3!

attractive at all distances~model III!. The force given by Eq.
~1! does not follow directly from Ref.@6#, although it retains
its salient features suggested in Ref.@6#, i.e., attraction at
short distances and repulsion at large distances. We s
discuss this point further in Sec. V. In model I, we ha
assumed the form of the repulsive part of the potential to
exponential and checked that other forms~i.e., algebraic! do
not change the final conclusions. The attractive part of
force in model I is constant at short distances in accorda
with the interaction of two RH defects in the infinite spac
The model III is slightly inaccurate in comparison with Re
@8# since the force in Ref.@8# decreases at large distances
exp(2x), but with a very short correlation length, i.e.,D/6.6.
If we look at Fig. 2 of Ref.@8# it can be well approximated
by Eq. ~3!. We have assumed that the forces act between
nearest neighbors, but we have also verified that even if
assume that every defect interacts with every other defec
the line, it does not change qualitatively and also quant
tively the results. Because the interactions between the p
defects are related to the three-dimensional~3D! distribution
of the director field it is reasonable to assume that the in
actions between the defects are strongly screened by
nearest neighbors and therefore this justifies the assump
of the nearests neighbors interactions. The dynamics of
system depends also on translational viscosity of the defe
which is directly proportional to the rotational viscosity o
the director field in the bulk. The distortions of the fie
decrease when two opposite defects are close together
increase when the distance between them increases. T
fore, the viscosity is directly proportional to the elastic e
ergy stored in the director field at least for short distances
which this energy is proportional to the distance between
defects@7#. Therefore, we have also studied two cases: o
when the viscosity is independent of the distance and
when it linearly depends on the distance@9# between6 de-
fects.

We assume that we haveN defects of alternating sign on
the line of lengthL. In the model we simply assume that th
defects move under the influence of forcef with a velocity
proportional to it. When the viscosity is independent of t
distance between the moving defects, we can write the
lowing equations for the velocityv i of the i th defect in the
array:

-
cts
1-2
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v i52 f ~xi ,i 11!1 f ~xi 21,i !, ~4!

dyi

dt
5v i . ~5!

Here

xi , j5uyi2yj u

is the distance between thei th and j th defects andyi is the
location of thei th defect on a line. For the model with
viscosity depending linearly on the distance, we use the
lowing equation instead of Eq.~4!:

~xi ,i 111xi 21,i !v i52 f ~xi ,i 11!1 f ~xi 21,i !. ~6!

In general, all constants in the model such as viscos
strength of the potential or its range rescale the time and
distance and therefore they do not explicitly appear in
model. It follows that all quantities are dimensionless. W
took reflecting boundary conditions with zero force acting
the defect at the boundaries and verified that the results
not change if we take as the boundary force a force produ
by the mirror image of the last defect. In general, the fi
results do not depend on the particular form of the inter
tion between the last~or first! defect on the line with the
boundary. As typical parameters we have usedL51000 and
N51500 with a random initial distribution of the defects o
the line. Each defect~e.g., ‘‘2’’ ! had an opposite defect~‘‘
1’’ ! at each of its sides. Two defects were annihilated wh
the distance between them was less than 0.1. We us
simple Euler scheme to solve the equations with a time s
of 0.1 and checked the results for the time step 0.01.
averaged the results typically over 400 runs i.e., 400 ini
configurations. We have verified that the final results did
depend strongly on the initial distribution; even for an alm
equidistant distribution of defects with small standard dev
tion ~1% of the average distance! we have got the same re
sults as with the random distribution. Also, qualitatively t
model given by Eq.~4! and the one given by Eq.~6! gave the
same qualitative results; one only had to rescale the t
scale. We have also noted that the final distribution of defe
in the case of the model force given by Eq.~1! did not
depend on the initial number of defects on the line provid
that N was large enough, i.e., roughly much larger thanL/4.

III. RESULTS

First of all, we have found that the models with the attra
tive force between opposite defects~models II and III! give
always a monotonic growth of the standard deviation of
distribution of distances between the defects. In the cas
the model given by Eq.~2! ~model II!, the average distanc
and the standard deviation of the distribution of distan
grow at short times reaching a plateau at longer times.
final distribution reaches the average distance 3.6 with
standard deviation 2.7. The average distance between th
fects is much larger than the distance at which the forc
zero in this model. In the model given by Eq.~3! ~model III!
the force does not vanish at any fixed distance between
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defects, as in model given by Eq.~2!, and therefore both the
average and the standard deviation grow in time. Howe
the growth of the standard deviation at longer times is lo
rithmic. Neither the dynamic with the force given by Eq.~2!
nor the one given by Eq.~3! is consistent with the experi
mental results shown in Fig. 1.

The comparison of the average distance between the
fects for the three models is shown in Fig. 2. The growth
the average distance between the defects reaches a con
value for model I and II, and grows, for model III, untill th
last pair of opposite defects is present. In models I and II,
reach the final configuration with a comparable number
defects, while in model III defects always disappear at
end, but extremely slowly~logarithmically!.

Even more different is the behavior of the standard dev
tion of the distribution of the distances between the defe
shown in Fig. 3. The model given by Eq.~1! gives a peak in
the standard deviation consistently with the experimental
sults while the model with purely attractive force~model III!

FIG. 2. The average distance between the defects as a fun
of time for models I, II, and III@Eqs.~1!–~3!#.

FIG. 3. The standard deviation for the distribution of distanc
between the defects as a function of time for models I, II, and
@Eqs.~1!–~3!#.
1-3
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leads to the monotonic growth. It is interesting to note t
this monotonic growth is logarithmic in time. Also, the d
crease of the standard deviation is logarithmic for mode
which is also consistent with the experimental results.

We have also studied model I with the equidistant init
distribution of defects with no force at the boundary. T
behavior of such array depends strongly on the initial d
tance between the defects. When this distance is smaller
1 ~at x51 the force is exactly zero and repulsive forx.1!
all defects disappear during the evolution. When the dista
is between 1 and 2~for x52 the repulsive force is the larg
est! part of the defects disappears. And forx52 or larger
none of the defects annihilates. However, it is sufficient
introduce a small disorder in the initial configuration to fin
the same behavior as in the case of random distribution
defects.

We have looked at the influence of the viscosity in mo
I. In Fig. 4 ~inset!, we plot the standard deviation for mod
I ~Eq. ~1! and Eq.~4!, i.e., constant viscosity! and model I
with distance dependent viscosity@Eq. ~1! and Eq.~6!#. As
can be seen the evolution is much slower~order of magni-
tude! in the latter case than in the former case as shown
the figure and in the inset. But the close comparison betw
the figure and its inset shows that by the proper rescalin
the time scale we find the same results. It is interesting
note that this slowing down cannot be accounted for by
force f (x)/x with f (x) given by Eq.~1!. The model with
such a force gives practically the same results as mod
with force f.

Finally, we have studied several potentials that had
same attractive part~linear in x! and different repulsive par
~exponential or algebraic! and found that the details of th
potential do not strongly influence the dynamics except
the change of the time scale~similarly as in the case of the
distance dependent viscosity discussed above!.

FIG. 4. The standard deviation for model I with the viscos
depending linearly on the distance between the defects@Eq. ~1! and
Eq. ~6!#. In the inset, we show its behavior for a short time sca
i.e., the same as used in Fig. 3 together with the results of mod
with constant viscosity@Eq. ~1! and Eq.~4!, see also Fig. 3#. Please
note the change of scale between the figure and inset.
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IV. CONCLUSIONS

From our results it follows that only model I characteriz
by the attractive force at short distances and repulsive fo
at large distances is consistent with the experimental res
presented in Fig. 1. The evolution of point defects in th
case is characterized by a peak in the standard deviatio
the distribution of the distances between the defects and
logarithmic decrease at longer times. The final average
tance between the defects is roughly twice as large as
distance at which the repulsive force between the defe
attains its maximal value. The evolution does not depend
the initial distribution of defects. The distance dependent v
cosity or different form of the repulsive potential~algebraic
or exponential! does not change the results qualitatively e
cept for the change of time scale as shown in Fig. 4. T
means that from the experimental studies described in R
@14# one can only get the distance at which the repuls
force between the defects attains the maximum, since
qualitative and quantitative behavior of the defects is
very sensitive neither to the viscosity nor to the exact form
the potential. More information can be obtained if one p
dicts the time scale of the evolution from the microscop
calculations.

V. FURTHER DISCUSSION

The problem of the dynamics of the array of point defe
on the line is far more complicated than described in t
paper. In this last section, we shall discuss the main assu
tions that have been made in the paper and the approac
the solution of the full problem.

First of all we have assumed that the system can be
scribed by the pairwise potential. The defects on the line
a consequence of the 3D distribution of the director fieldn,
and in general the nonlinear equations for the 3D distribut
of the director in the capillary can give rise to the many-bo
potential between the defects. However, the pairwise addi
potential can provide a good~but not perfect! description of
the system. We have also assumed that the dissipation c
ficient is either a constant or a linear function of the sepa
tion between the defects. In general, it can be a complica
nonlinear function of the distances between all the defe
present on a line. Nevertheless, a simplified model for
viscosity used in this paper seems to give a reasonable
scription of the system. In order to see these two points m
clearly let us discuss the derivation of the equations of m
tion for the point defects from the motion of the 3D direct
field.

The solution of the equations of motion for the defects
a line should follow from the solutions of the equations
nematodynamics@9# for the director field in the capillary in
the presence of point defects. The problem can be simplifi
because the time scale for the reorientation of the directon
is much shorter~few orders of magnitude! than the time scale
of the translational motion of the defects on the line. The
fore, we may assume the following scenario for the proce
We haveN defects on a line characterized by their locati
y1¯yN . At each instant of time the director fieldn assumes

,
l I
1-4
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a configuration minimizing the Franck elastic energyF̂@n# ~a
functional ofn!, subject to the constraint of constant locati
of the defects,y1¯yN . After minimization we get the
Franck free energy as a function ofN variablesy1¯yN , i.e.,
F(y1¯yN). In Ref. @6# this function has been calculate
only for a special case of constant distance between the
fectsyi2yi 115 l for eachi. Next, we have to find the equa
tion of motion for the defects. We assume that all the ela
energy is dissipated in the process. The dissipation func
D @7# is

D5g1E dr S ]n

]t D
2

, ~7!

where the integral is over the whole volume of the systemt
is time, andg1 is the orientational viscosity. The directo
field n follows from the minimization ofF̂@n# and therefore
is a function ofy1¯yN . Because of the separation of tim
scales, we assume that the whole dependence ofn on time is
hidden iny1¯yN . Thus, we may write

]n

]t
5(

i 51

N
]n

]yi

dyi

dt
. ~8!

Both F(y1¯yN) andn(r ;y1¯yN) follow from the numeri-
cal solution of the minimization ofF̂@n#. Finally, we assume
that during the motion of the defects the dissipation is m
mized, i.e.,

2Di[
]D

]yi8
50 ~9!

(yi85dyi /dt), subject to the constraint that the whole elas
energy is dissipated in the process i.e.,

dF~y1¯yN!

dt
1D50. ~10!

Using the Lagrange multipliers and the quadratic depende
of the dissipation on velocities, we find the following equ
tion of motion:
d

s.

04171
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]F

]yi
50, ~11!

where

Di5(
j 51

N
dyj

dt
g1E dr

]n

]yi

]n

]yj
. ~12!

The numerical solution of this problem is far from bein
trivial, but only this solution can give us a hint whether th
assumptions about the constant viscosity or the pairwise
ditive potential are correct. For the pairwise additive pote
tial between nearest neighbors,V(x), to be a valid approxi-
mation the form ofF(y1¯yN) should be as follows:

F~y1¯yN!5(
i

V~xi ,i 11!, ~13!

wherexi ,i 115uyi2yi 11u is the distance between thei, i 11
defects. For the viscosity to be a constant independent oyi
we should have

Di'const
dyi

dt
. ~14!

Both assumptions can be verified after the numerical solu
of F(y1¯yN) andn(r ;y1¯yN) are determined.

We conclude that despite 11 years of intensive studie
point defects on a line inside capillaries the problem of
interaction potential between them is far from being solv
The qualitative agreement of our simplified model~pairwise
additive potential with attractive and repulsive part! with the
results of experiment@11# provides a good~but not perfect!
description of the defect motion on a line in a capillary.
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